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A detailed theoretical model is presented to interpret electrokinetic experiments performed on colloids with
uncharged polymer layers. The methodology removes many of the degrees of freedom that otherwise have to
be accounted for by adopting multiple empirical fitting parameters. Furthermore, the level of detail provides a
firm basis for future studies examining liposome surface chemistry and charge, surface-charge mobility, and the
dynamics of adsorbed polymer on fluidlike membranes. The model predictions are compared with experimen-
tal measurements of the electrophoretic mobility ofstealth liposomes with molecular weights of terminally
anchored poly(ethylene glycol) (PEG) in the range 0.35–10 kg mol−1 [J. A. Cohen and V. A. Khorosheva,
Colloids Surf. A 195, 113 (2001)]. The experimental data are interpreted by drawing upon self-consistent
mean-field calculations of the polymer segment density distributions and numerically exact solutions of the
governing transport equations[R. J. Hill, D. A. Saville, and W. B. Russel, J. Colloid Interface Sci.258, 56
(2003)]. The approach leads to excellent agreement between theory and experiment with one adjustable
parameter—the hydrodynamic size(Stokes radius) as<0.175 Å of thestatisticalPEG segments with(Kuhn)
lengthl =7.1 Å. The remarkably small Stokes radius is demonstrated to be consistent with other applications of
the well-known Debye-Brinkman model and, consequently, this work reveals important limitations of the
mean-field hydrodynamic model. Despite such limitations, the “full” electrokinetic model is robust in its
predictive capacity. The molecular weights of the terminally anchored PEG span the range where the coatings
undergo a transition from mushroomlike to brushlike conformations, and the hydrodynamic size and electro-
phoretic mobility of the liposomes are demonstrated to be sensitive to the PEG chain length and the effects of
double-layer polarization.
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I. INTRODUCTION

Poly(ethylene glycol) (PEG) chains with hydrophobic end
groups have found widespread use as coatings for lipid bi-
layer membranes, as have longer poly(ethylene oxide) (PEO)
homopolymers for latices.1 In biomedical applications, PEG
coatings are used to help control(extend) the circulation time
of drug-carrying liposomes, often referred to asstealth lipo-
somes. PEG layers are also known to inhibit the adsorption
of proteins(antibodies), thereby “protecting” the drug carrier
from recognition by the immune system.

Synthetic lipid bilayers are an ideal model system for
studying polymeric interfaces. This is due, in part, to the
high degree of control that can be exercised over the polymer
grafting density and, hence, thesteric contribution to the
interaction potential. Similarly, theelectrostaticcontribution
can be “tuned” by varying the stoichiometric ratio of charged
to uncharged lipids used in the liposome synthesis. In prin-
ciple, the liposome size can also be controlled and, hence,
the effects of surface curvature on the polymer conformation
can be realized.

A novel means of studying lipid bilayer surfaces is to
support them on monodisperse microspheres. Galnedar and

co-workers[1] recently used a novel combination of optical
trapping and microelectrophoresis to study enzyme kinetics
on “bare” lipid bilayers supported on a silica microsphere.
While it is not yet clear that the bilayer surface characteris-
tics are independent of the underlying solid support, the dy-
namics of the surface charge density and, hence, the reaction
kinetics can be characterized. This approach provides new
opportunities for studying how charged and uncharged poly-
mers regulate protein adsorption, for example.

The principle challenge in interpreting such experiments
lies in quantitatively connecting the measured quantities
(electrophoretic mobility and hydrodynamic radius) to sur-
face characteristics. To this end, Brooks and co-workers have
developed and applied a variety of continuum electrokinetic
models to interpret the electrophoretic mobility of human
erythrocytes[2,3], vesicles[4], and liposomes[5]. These
models have played an important role in quantitatively char-
acterizing the polymer-coated surfaces of the respective bio-
logically relevant colloids. An important limitation of these
models is, perhaps, that the polymer segment density distri-
butions are assumed to be steplike, i.e., the layers are uni-
form. The models are also limited to flat interfaces, which
provides a reasonable approximation for colloids with radius
greater than 1mm at physiological ionic strengths. It is well
known, however, that surface curvature is important when
the diffuse double-layer thickness is comparable to or greater
than the particle radius. These conditions prevail for thera-
peutic liposomes, which have radii of the order of 100 nm, as
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1PEG and PEO chains need only be distinguished by the monomer
used to synthesize them.
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well as for PEG-derivatized proteins. Such limitations re-
strict the theoretical interpretation of electrokinetic experi-
ments to high ionic strengths, whereas electrokinetic phe-
nomena are often much richer when viewed over a range of
ionic strengths, when the double-layer thickness traverses the
characteristic thickness of the polymer layer(see[6]).

The goal of this work is to bring together recent theoret-
ical and computational advances in electrokinetic transport
phenomena with a rigorous theoretical description of inho-
mogeneous polymer layers and to use this theory to interpret
relatively well-characterized experiments by Cohen and
Khorosheva(CK) measuring the electrophoretic mobility of
liposomes with coatings of terminally anchored PEG[7].

The structure of adsorbed polymer layers depends, in part,
on the polymer chain length and flexibility, as characterized
by the numberN and (Kuhn) length l of the statisticalseg-
ments. Also important is the number of grafted chains per
unit area, referred to here as the grafting densitys=d−2,
whered is the characteristic distance between the points of
attachment. In contrast to layers of adsorbed homopolymer,
the structure of terminally anchored layers depends on the
chains possessing a relatively short anchoring block or sub-
chain.

The anchoring block for the PEG chains addressed in this
work is a terminal(anionic) lipid, phosphatidylethanolamine
(PE). This macromolecule has the same(single negative)
charge at the PE-PEG link as the phosphatidylglycerol(PG)
lipids that contribute to the surface charge of an otherwise
neutral membrane composed of(zwitterionic) phosphatidyl-
choline (PC) lipids. This ensures that the bare and PEG-
coated liposomes used in CK’s experiments have the same
surface charge. In this study, the uncoated liposomes are
treated as bare impenetrable spheres, and thestandard elec-
trokinetic model[8,9] is used to establish theeffectivesur-
face charge from measured electrophoretic mobilities. Then,
a rigorous electrokinetic transport model[6] and a self-
consistent mean-field description of the polymer layers are
used to calculate the effect of PEG on the hydrodynamic size
and electrophoretic mobility.

When the grafting density is low and, hence,d is greater
than the characteristic coil sizelNn, with n=0.5 for chains in
a thetasolvent andn<3/5 for anathermalor goodsolvent
[10], terminally anchored chains adopt “mushroom” confor-
mations. The nominal coating thickness is thenL8, lNn with
nominal segment volume fractionf=nl3,sl2N1−n, wheren
is the segment number density. When the grafting density is
high and, hence,d is less thanlNn, the chains are forced to
interpenetrate. Excluded volume causes the chains to extend,
giving rise to brushlike conformations with L8
,Nlssl2ds1−nd/s2nd and f,ssl2d3/2−1/s2nd. The “blob” model
adopted by de Gennes[11] to arrive at the foregoingscaling
theories forplanar brushes has been extended by Daoud and
Cotton [12] and others[13,14] to account for highly curved
interfaces and charged polymer.

Models that go beyond scaling theory have been devel-
oped to account for the effects of surface curvature, the
“strength” of the solvent, and the distributions of segments
and chain ends. These are based on self-consistent fields,
such as the Dolan-Edwards self-consistent mean-fieldcon-
tinuum theory [15] and the Scheutjens-Fleer self-consistent

mean-field lattice theory [16]. There exist analytical
[13,14,17–20] and numerically exact[13,21–23] solutions of
various mean-field models for neutral polymer brushes. It
should also be mentioned here that there exists a large body
of literature devoted to charged(polyelectrolyte) layers(e.g.,
[24–27]).

Mention should also be made of more direct calculations,
using Monte Carlo[28–31] and Brownian dynamics[32–34]
simulations, which address equilibrium and dynamic aspects,
respectively. In general, there exists good agreement between
mean-field theories and the results of a relatively few direct
calculations for neutral polymer brushes. The differences
mostly concern details of the region close to the grafting
surface and, of course, the various numerical prefactors, or
lack thereof, required for quantitative comparisons. The
available evidence suggests that mean-field approximations
for neutral, grafted chains are satisfactory from an at least
semiquantitative point of view.

Coatings of adsorbed PEO chains(homopolymer) are
widely used to sterically stabilize colloidal dispersions and
can also be used to induce flocculation[35,36]. In contrast to
terminally anchored chains, adsorbed homopolymers give
rise to a compact inner region, with a low-density outer re-
gion comprised of loops and tails. These layers have been
studied using(i) ground-state approximations to the solution
of self-consistent mean-field equations[37,38] and (ii ) self-
consistent mean-field lattice theory[39–41].

The foregoing calculations of the equilibrium segment
density distribution provide the segment-weighted coating
thickness, via moments of the segment density distribution
and the hydrodynamic thickness, via Brinkman’s equations
[42–44]. These can be measured using techniques based on
(i) thescatteringof neutrons and x rays, for example, and(ii )
hydrodynamics, as interrogated by capillary flow, viscometry,
and quasielastic light scattering[16].

In contrast to flows driven entirely by pressure gradients
or viscous shear stresses, electrically driven flows are sensi-
tive to the segment density distribution throughout the coat-
ing, not just at the periphery. The theoretical interpretation of
electrokinetic experiments therefore poses a much more
challenging and rigorous test of theory, and there is much
more to be learned of the surface and the transport processes
that take place there[2,6,45–47].

Despite the extensive literature devoted to the “structure”
of polymer layers, the influence of such coatings on the elec-
trokinetics of polymer-coated colloids is not well understood.
The nonlinear Poisson-Boltzmann equation and deformation
of the diffuse double layer severely limit analytical theory.
O’Brien and White’s[48] well-known approach to numeri-
cally solve the “full” electrokinetic model(standard model)
overcame these difficulties for bare colloids, and the bound-
ary conditions have since been modified to account for trans-
port processes taking place in an infinitesimally thin surface
layer [49,50]. Nevertheless, when these so-called Stern-layer
models are adopted to mimic the effects of surface-bound
polymer, the interpretation of experiment remains empirical.

Recently, Hill, Saville, and Russel[6] (HSR) solved the
full electrokinetic model for colloids with neutral(un-
charged) and charged(polyelectrolyte) polymer coatings.
Since the model requires knowledge of the radial distribution
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of polymer segments and their hydrodynamic size and
charge, it has not yet been applied to quantitatively interpret
experiments. Various approximate solutions have been devel-
oped, most notably by Ohshima, who set out a general form
of the full model and provided analytical solutions for vari-
ous asymptotic limits, neglecting double-layer polarization
(e.g., [51,52]). Earlier, Levine and co-workers[2] used a
numerical approach to address the effect of high surface po-
tentials, for large polyelectrolyte-coated colloids(human
erythrocytes). Janzen and co-workers[5] applied this model
(by setting the polymer charge density to zero) to interpret
the electrophoretic mobility of PEG-coated liposomes. More
recently, Saville [47] applied a semianalytical approach,
pointing out the significance of double-layer polarization for
large particles with thin, charged and uncharged polymer lay-
ers.

The numerical approach of Janzenet al. for uniform, un-
charged polymer layers is similar to Ohshima’s analytical
theory, but theshear planemay be displaced from the plane
of (surface) charge. The thin region between the charged
surface and shear plane is hydrodynamically impermeable,
but permits ion diffusion. For flat interfaces, shifting the
shear plane out from the plane of(possibly fixed) surface
charge lowers the effective surface potential and, hence, low-
ers the effective surface charge. Janzenet al. applied their
model to infer the polymer conformation from measured
electrophoretic mobilities. Because the layers were assumed
uniform and the range of polymer molecular weights was
small, their interpretation of experiments was limited in
many quantitative respects. Nevertheless, the study clearly
highlights the significant effect that neutral polymer has on
the electrophoretic mobility and, furthermore, it provides a
sound basis for the much more detailed calculations pre-
sented below.

In this work, the HSR electrokinetic model is compared
with experiment by adopting a self-consistent mean-field
theory to calculate the radial distribution of polymer seg-
ments. These distributions are used to specify the Brinkman
permeability appearing in the electrokinetic model. Cohen
and Khorosheva’s experiments[7] are sufficiently well char-
acterized that there remains onlyone “unknown” parameter
with which to fit the full model over a wide range of PEG
molecular weights and bulk ionic strengths. The “fitting” pa-
rameter is the hydrodynamic(Stokes) radius of the polymer
(statistical) segments,as. Therefore, given the polymer graft-
ing density and molecular weight, and the underlying charge
density, this work establishes a model to predict the hydro-
dynamic and electrokinetic characteristics of a variety of
spherical colloids with terminally anchored PEG coatings. In
principle, the model can be applied to infer the amount of
adsorbed polymer and charge from measurements of the
electrophoretic mobility, for example. Alternatively, given
the polymer grafting density and molecular weight, it pro-
vides the effective particle size.

In Sec. II, the HSR electrokinetic model is described, fol-
lowed by a description of the self-consistent mean-field
model for calculating polymer segment density distributions.
In Sec. III, CK’s experiments with micron-sized PEG-coated
liposomes are interpreted using the full theory, thereby estab-
lishing the hydrodynamic radius of the statistical polymer

segments. The subsections therein discuss the structure,
thickness, density, and permeability of the coatings. Section
IV addresses the remarkably small hydrodynamic size of the
polymer segments. A summary follows in Sec. V.

II. THEORY

The procedure is to first calculate the equilibrium distri-
bution of polymer segments using a self-consistent mean-
field theory. Then, the segment density distribution is
adopted in the HSR electrokinetic model to specify the
Brinkman permeability and, hence, to calculate the effective
particle size and electrophoretic mobility. The electrokinetic
and self-consistent mean-field models are described below, in
Secs. II A and II C, respectively. Section II B links the elec-
trokinetic model to the effective coating thickness and elec-
trophoretic mobility.

A. Continuum electrokinetic model

An impermeable spherical colloid is suspended in an un-
bounded electrolyte. The particle surface is characterized by
a uniform distribution of charge or surface potential, and
attached to the surface is a radially varying distribution of
polymer segments. In general, a fraction of the polymer seg-
ments may be charged, and the polymer and underlying sur-
face charge may vary with the bulk electrolyte concentration.
In this work, however, the polymer is neutral and the surface
charge is assumed constant. At equilibrium, i.e., in the ab-
sence of buoyancy and applied electric fields, the particle
develops a spherically symmetric diffuse double layer. Then,
with the application of an electric field, the particle is set in
motion with a velocity that reflects characteristics of the
electrolyte, polymer coating, and particle.

The electrostatic potential is coupled to the distribution of
charge by the well-known Poisson-Boltzmann equation

¹2c = − o
j=1

N

zjnj , s1d

where the potentialc is scaled with the thermal energy per
elementary chargekT/e, andzj denote the valence of thej th
ion species. The densities of the counterionsnj, which con-
tribute to the net charge density in the electrolyte, are scaled
with twice the ionic strength

2I = o
j=1

N

zj
2nj

`, s2d

wherenj
` denotes ion densities in the bulk electrolyte. For a

1-1 electrolyte, the scaled ion densities decay ton1
` / s2Id

=n2
` / s2Id=0.5 in the bulk, for example. Throughout this sec-

tion, lengths are scaled with the double-layer thickness

k−1 = ÎkTese0/s2Ie2d, s3d

wherees is the dielectric constant of the solvent ande0 is the
permittivity of free space. For an aqueous solvent at room
temperature, the double-layer thickness is typically less than
100 nm.
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The ion transport equations are

NPej
su − v jd − zj = c − = lnsnjd = 0 s j = 1, . . . ,Nd, s4d

where the fluid and ion velocitiesu andv j are scaled with a
characteristic velocity

u * = ese0skT/ed2/shad. s5d

Here, a is the “bare” particle radius andh is the solvent
viscosity. For particles witha=100 nm in an aqueous sol-
vent, u* ,10−3 ms−1, and with ion diffusivities Dj
,10−9 m2 s−1, the ion Péclet numbers

NPej
= u * k−1/Dj s6d

areO(10−1/ skad); these indicate the extent to which convec-
tion may deform the equilibrium double layer. Note that the
ion diffusivitiesDj =kT/l j may be obtained from the respec-
tive ion mobilitiesl j

−1=L j / se2uzjud, whereL j are the limiting
conductances for dilute electrolytes[53].

Under steady conditions, the ion conservation equations
are

= · snjv jd = 0 s j = 1, . . . ,Nd, s7d

with fluid momentum and mass conservation governed by
the linearized Navier-Stokes equations

¹2u − = p − Bsrdsu − Vd − kao
j=1

N

njzj = c = 0 s8d

and

= ·u = 0. s9d

The particle velocityV and the pressurep are scaled withu*
and hu* k, respectively. Note that, in setting the third term
on the left-hand side of Eq.(8) proportional tou−V, the
underlying bare particle and the polymer coating are as-
sumed to move together as a rigid composite.

The dimensionless function

Bsrd = 1/fk,srdg2 s10d

appearing in Eq.(8) is the square of the ratio of the double-
layer thickness to theBrinkman screening length,, which
characterizes the(local) hydrodynamic permeability of the
polymer coating. The resultingDarcy drag forceaccounts for
hydrodynamic drag arising from the relative motion of the
polymer segments and interstitial fluid.

The Brinkman screening length may be related to the
structure of the polymer coating by expressing the body
force as the product of the polymer segment densitynsrd and
the drag force on a single segmentfs=6phassu−VdFs. When
the segments are represented by spheres with(Stokes) radius
as, the dimensionless drag coefficientFs depends on the vol-
ume fraction fs=ns4/3dpas

3. Equating nfs to the dimen-
sional form of the Darcy drag term in Eq.(8),
sh /,2dsu−Vd, gives

,2 = 1/sn6pasFsd = 2as
2/s9fsFsd. s11d

In this work, thelocal distribution of polymer segments is

modeled as a rigid “random” configuration of spheres, with a
drag coefficient[54,55]

Fs =
1 + 3sfs/2d1/2 + s135/64dfs ln fs + 16.456fs

1 + 0.681fs − 8.48fs
2 + 8.16fs

3 s12d

when the volume fraction is less than approximately 0.4.
This formula accounts for drag force on the segments arising
from their hydrodynamic interactions. In the dilute limit
(fs→0), which is relevant in this work, Eq.(12) recovers
Brinkman’s well-known formula[42]. The longer-range in-
homogeneity of the coatings is described by the self-
consistent mean-field model discussed in Sec. II C.

The surface charge densitys on the bare particle is as-
sumed constant and uniform, and imposes the surface bound-
ary condition

u = cu+ ·n − sep/esdu = cu− ·n = − s at r = ka, s13d

whereep is the dielectric constant of the bare particle,2 andn
is an outward unit normal. Here, the surface-charge density
is scaled withkese0kT/e, and the plus and minus subscripts
indicate the solvent and particle sides of the surface, respec-
tively.

If the potential at the surface of the bare particlez is
specified instead of the surface charge density, then Eq.(13)
provides the surface charge density. In the far field, the gra-
dient of the potential approaches the applied electric field, so

c → − E · r asr → `, s14d

where the electric field strengthE is scaled withkTk /e.
Other surface boundary conditions, which are not dis-

cussed here, ensure the impenetrability of the bare particle
and the no-slip condition at its surface. The far-field bound-
ary conditions ensure the proper decays of the electrostatic
potential, ion densities, and fluid velocity[6].

B. Electrophoretic mobility and hydrodynamic size

The solution of the electrokinetic model presented above
is obtained by first solving the nonlinear Poisson-Boltzmann
equation for the spherically symmetric equilibrium distribu-
tions of c andnj. Then, with the application of a weak uni-
form electric fieldE or far-field velocityU=−V, there results
a system of stiff, linear ordinary differential equations whose
solution yields the perturbed electrostatic potential, ion den-
sities, and fluid velocity. As shown in detail by Hillet al. [6],
the far-field decay of the fluid velocity disturbance, together
with the particle equation of motion, leads to the dimension-
lesselectrophoretic mobility3

M = V3he/sE2ese0kTd s15d

anddrag coefficient

F = f/s6phaVd, s16d

wheref is the drag force on the composite particle when it is
translated in an unbounded electrolyte with relative velocity

2The electrostatic boundary conditions do not affect the electro-
phoretic mobility[48], so, in this work, the value ofep is irrelevant.

3The magnitude(not the sign) of the mobility is reported.
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V in the absence of an applied electric field. In this work, the
drag coefficient is interpreted by adopting aneffective coat-
ing thickness

L = asF − 1d, s17d

wherea+L is the radius of a bare uncharged sphere with the
same drag coefficient as the charged coated sphere under
consideration. Note thatL.0 because of(i) the hydrody-
namic drag of the polymer segments and(ii ) electroviscous
drag due to electro-osmosis of mobile charge within the dif-
fuse double layer[56]. In the absence of electroviscous ef-
fects, the effective coating thickness equals thehydrody-
namiccoating thickness. The “actual” thickness of a steplike
(uniform) coating or the characteristic thickness of a nonuni-
form coating is denotedL8.

C. Self-consistent mean-field theory

The electrokinetic model described briefly above requires
knowledge of the radial distribution of polymer segments
which, in turn, specify the spatially varying Brinkman per-
meability. In previous applications of the model and in its
various simplified forms, the segment density distribution
has been assumed step like[2,45,47,51], exponentially de-
caying [51], or diffuse[6].

This section describes a methodical approach for calculat-
ing the segment density distribution for terminally anchored
chains. The density is calculated from knowledge of funda-
mental characteristics, such as the segment sizel, the number
of statistical segments,N, and the grafting densitys. The
approach is similar to the well-known lattice models of Fleer
et al. [16] but thecontinuumapproach adopted here is closer
to that of Dolan and Edwards[15] and the more recent cal-
culations of Dan and Tirrel[21] for curved interfaces.

The probability of a chain beginning at radial positionr8
and ending atr in s steps, with each step of lengthl, is
denotedGsr ,r8,sd. When this probability varies slowly on
the segment length scale, under the influence of an “exter-
nal” potentialUsrd, it evolves according to[15,57]

]G

]s
=

l2

6
¹2G + f1 − eUsrd/skTdgG. s18d

In themean-fieldapproximation adopted in this work,U is to
be determined self-consistently and is therefore expressed in
terms of the(local) segment densityn, which is often re-
ferred to in terms of a volume fraction

f = nsrdl3, s19d

where l is the length of a segment. The contour length islc
=Nl, whereN is the number of statistical segments per chain.
These statistical parameters are related to the number of
monomer segments or degree of polymerization in Sec. III B.

The self-consistent mean-field potential adopted in this
work is obtained following Patttanayek and Juvekar’s analy-
sis, which, in turn, rests upon Flory’s well-known theory for
homogeneous polymer solutions. According to the Flory
theory, the free energy of mixingVmn2/N polymer chains
with Vmn1 solvent molecules is

F/skTd = Vmn1 ln f1 + Vmn2
1

N
lnsf2d + xsf2,TdVmn1f2,

s20d

wheref1=n1v1 and f2=n2v2 are, respectively, the volume
fractions of solvent molecules and “monomer” segments,
with Vm the mixture volume andx the well-known(Flory)
x-parameter. Clearly,n1 andn2 are the solvent and polymer
segment number densities, respectively. The corresponding
chemical potentials, which are obtained by differentiatingF
with respect to the number of solvent molecules and mono-
mer segments, are

sm1 − m1
0d/skTd = ln f1 + f2F1 −

1

N

v1

v2
G + f2

2sx − f1xf2
d

s21d

and

sm2 − m2
0d/skTd =

v2

v1
F 1

N

v1

v2
ln f2 − f1S1 −

1

N

v1

v2
D

+ f1
2sx + f2xf2

dG , s22d

where the subscripts attached toxsf2d indicate partial differ-
entiation. Pattanayek and Juvekar[38] show that

Usrd/skTd = UFm2/skTd −
v2

v1
m1/skTd −

1

N
ln f2GU

f2
`

f2

,

s23d

which leads to

Usrd/skTd =
v2

v1
uf− lns1 − f2d + xs1 − 2f2d

+ s1 − f2df2xf2
gu

f2
`

f2 . s24d

Note that f2+f1=1 and f=nl3 so f2=fv2/ l3. Equation
(23) expresses the self-consistent mean-field potential for the
inhomogeneous polymer layer in terms of data for homoge-
neous(semidilute) polymer solutions. The ratiov2/v1 that
multiplies the chemical potential of the solvent gives the
number of solvent molecules displaced by a single polymer
segment. Therefore,U can be interpreted as a free energy
cost to transfer a polymer segment from the bulk to the in-
homogeneous polymer layer. This free energy excludes the
translational entropy of the polymer[third term in Eq.(23)]
because this is accounted for by solving Eq.(18).

Pattanayek and Juvekar obtained the coefficients of qua-
dratic polynomials that capture the dependence ofx upon
temperature and the polymer segment volume fraction,f2.
The composition dependence ofx is reported to originate
from hydrogen bonding between PEG segments and water
molecules. This gives rise to both “energetic” and entropic
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contributions to the free energy. The polynomial coefficients4

were obtained by fitting Flory’s model, via Eqs.(21) and
(22), to phase-equilibrium data from a variety of sources in
the literature(see[38]). Figure 1 shows howU / skTd depends
on f at T=25 °C. Note that, whilex is greater than 0.5 at
infinite dilution sf→0d, the expansion of Eq.(24) for small
f2, with f2

`=0, is

U/skTd =
v2

v1
hf2f1 − 2sx − xf2

dg + f2
2f1/2 +s3/2dxf2f2

− 3xf2
g + Osf2

3dj, s25d

with x<0.644, xf2
<0.163, andxf2f2

<0.702 evaluated
from Pattanayek and Juvekar’s polynomials atf2=0 andT
=25 °C. At the relatively low monomer densities of interest
in this worksf,0.6d, Fig. 1 shows that Eq.(25) provides an
excellent approximation to the full expression(24). Note that
the leading-order term in Eq.(25) demonstrates how theef-
fectivevalue ofx depends onxf2

. At T=25 °C, for example,
its value at infinite dilution isx* <0.644−0.163=0.481, so
water is, indeed, a(moderately) “good” solvent for PEG at
this temperature, even thoughxs0d.0.5. The scaling theory
for brushes pointed to in the introduction gives a nominal
segment densityf,ssl2d3/2−1/s2nd<0.17 with sl2=0.072
andn=3/5. While the mean-field potential given by Eq.(24)
yields a relatively weak, repulsive potential,U / skTd
<0.025, it is shown below that brushlike conformations pre-
vail with sl2<0.072 whenNù30 and, hence, the molecular
weight exceeds approximately 1.5 kg mol−1.

The connection betweenGsr ,r8 ,sd andfsrd comes from
the so-calledcomposition law[16,57]

fsrd = aeUsrd/skTdE
0

NE
a

`

Gsr8,a,sdGsr,r8,N − sddr8ds,

s26d

wherea is a constant to ensure the correct grafting density.
For example, the number of chains grafted per unit area of a
spherical substrate with radiusa is

s = sl3a2Nd−1E
a

`

fsrdr2dr . s27d

The polymer segment density distribution is calculated by
solving Eqs.(18), (24), and (26) in a spherical coordinate
system withr as the single independent variable. The bound-
ary and “initial” conditions applied in this work are

l

2

]G

]r
= G at r = a s28d

and

Gsr,r8,0d = dsr − r8d, s29d

respectively. More sophisticated boundary conditions, which
incorporate an adsorption-energy parameterxs and account
for inhomogeneity of the surface-interaction region, can be
applied[37,38]. For repulsive interactions, however, the seg-
ment density distributions are insensitive to such details at
distances beyond approximately one segment length from the
surface. Equation(28) is a suitable boundary condition for
“hard,” impenetrable grafting surfaces and is equivalent to
settingGsa− l /2 ,r8 ,sd=0 [35].

The solution of Eq.(18) is calculated using a Crank-
Nicholson finite-difference method[58]. Because the self-
consistent segment density profile and, hence, the self-
consistent potential are initially unknown, an initial “guess”
is made, which is then improved upon by iteration. At each
iteration, a fractionb of the “new” segment density distribu-
tion is added to a fraction 1−b of the “old” distribution. The
convergence of this procedure depends onb, the initial esti-
mate forfsrd or Usrd / skTd, and, of course, the dimensionless
parametersx, N, v1/v2, v2/ l3, sl2, anda/ l that characterize
the polymer layers.5

III. INTERPRETATION OF COHEN AND KHOROSHEVA’S
EXPERIMENTS

In this section, the electrokinetic model is used to inter-
pret Cohen and Khorosheva’s experiments reporting the elec-
trophoretic mobility of spherical liposomes with coatings of
terminally anchored PEG. The composition of the liposomes
was described briefly in the Introduction. Cohen and Khoro-
sheva interpreted their data with a theory they developed for
flat surfaces(ka@1 and L@a). Their model invoked the
Debye-Hückel approximation6 and relaxed continuity of the

4In a private communication, Professor Juvekar pointed out that
the temperature in Table I of Pattanayek and Juvekar’s paper[38]
should be expressed in °C.

5Here, s=d−2 is the grafting density, not the dimensionless
surface-charge density.

6In practice, the Debye-Hückel approximation is reasonable when
ucu,2.

FIG. 1. The scaled self-consistent mean-field potentialU / skTd
for aqueous PEO/PEG as a function of the scaled statistical segment
density,f=nl3=f2l

3/v2, at temperatureT=25 °C. The solid line is
the full expression based on Pattanayek and Juvekar’s correlation
for xsf2,Td [38], the dashed line is anOsf2d accurate expansion of
the full expression, and the dash-dotted line is the full expression
with x=0.48. Other parameters arev2/v1=3.3, v2=0.27l3, l
=0.71 nm, andf`=0.
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shear stress and, hence, the velocity gradient at the outer
edge of a steplike polymer layer. They clearly acknowledged
the limitations of this theory and used it to infer polymer
layer thicknesses and(hydrodynamic) permeability from
measured electrophoretic mobilities.

A. Cohen and Khorosheva’s theory

It remains to establish the conditions under which CK’s
theory is accurate and, hence, whether it provides a reliable
interpretation of the experiments. Before presenting the re-
sults of new calculations that solve the full set of electroki-
netic transport equations, with a self-consistent mean-field
description of the polymer, let us first establish the limita-
tions of CK’s modeland verify the accuracy of the full
model.

Figure 2 compares Ohshima’s flat-plate(ka→` and
L8 /a→0) theory [52] with the full model and CK’s simpli-
fied theory. The upper and lower subfigures are representa-
tive of characteristically thin and thick polymer layers, re-
spectively. The comparison of theory and experiment could
certainly be improved at lower ionic strengths by adjusting
the surface potential to mimic the effect of charge being
displaced behind a shear plane(e.g., [5,7]). However, the
primary interest here is to compare the analytical and nu-
merical calculations, so the experimental data are shown for
qualitative purposes and to demonstrate that the parameters
(see figure caption) are consistent with CK’s fit of their
model to the data at moderate and high ionic strengths. For
clarity, the three theories are presented with the same param-
etersand constant surface charge. Clearly, the deviation of
CK’s model from Ohshima’s flat-plate model and, indeed,
the full model, is significant.

The mobility-ionic strength relationship suggested by
Ohshima’s theory and the full calculations at high ionic
strengths suggest that the principle weakness of CK’s model
arises from the discontinuous change in the hydrodynamic
(shear) stresses at the outer edge of the coatings, rather than
the finite ratiosL8 /a andka. As expected, Ohshima’s theory
asymptotes to the full electrokinetic model at high ionic
strength. While Ohshima’s formula for arbitrary surface po-
tentials (dash-dotted lines), given in the form of a series
[[52], Eq. (11.4.24)], is slightly closer to the full theory than
his simpler expression for low surface potentials(dotted
lines) [[52], Eq. (11.4.27)]

M = s3uzu/2df1/coshsL8/,d − sk,d−1exps− kL8d

3h1/sk,d + tanhsL8/,djg/f1 − 1/sk,d2g, s30d

the finite particle size and, hence, the effects of polarization
are evidently the most limiting aspects of the analytical
theory whenka,500.

The qualitative form of the mobility-ionic strength rela-
tionship provided by the full model and, indeed, the experi-
ments, suggests that polarization plays a significant role in
decreasing the mobility of liposomes with low-molecular-
weight coatings (upper subfigure, Fig. 2) at low ionic
strength. With thicker layers(lower subfigure, Fig. 2), polar-
ization is attenuated because the polymer diminishes the con-
vective contribution to the ion flux, thereby increasing the

effectiveness of molecular diffusion in restoring the equilib-
rium state of the diffuse double layer.

Note that the segment density distributions adopted in full
model (Figs. 2 and 3) were specified with a complementary
error function, which approaches the step functions in the
analytical theories as the characteristic width of the coating
edged vanishes. The results in Fig. 2, withd /L8=10−3, dem-
onstrate that the numerical approach furnishes accurate solu-
tions of the governing equations, even when there are large
disparities in the length scalesa, k−1, L8, andd.

B. Specification of the model parameters

The dimensional parameters that characterize CK’s ex-
periments are listed in Table I. While many of these, such as
the ionic strength, are relatively straightforward to measure

FIG. 2. The (scaled) electrophoretic mobility M
=3heV/ s2ese0kTEd of spherical liposomes with coatings of termi-
nally anchored PEG as a function of the(scaled) reciprocal double-
layer thicknesska (aqueous NaCl atT=25 °C). The molecular
weights of the PEG areM =1 (top) and 5 kg mol−1 (bottom), with a
particle radiusa=1.75mm and (constant) surface charge density
s=−1.95mC cm−2. The dashed lines are Cohen and Khorosheva’s
simplified theory[7] with parameters fitted to their experimental
data (circles): L8=2.6 nm and,=1.6 nm (top); L8=13.2 nm and
,=4.7 nm (bottom). The solid lines interpolate numerically exact
solutions of the full electrokinetic model with steplike segment den-
sity profiles sd /L=10−3d [6] (symbols discarded for clarity) and
Cohen and Khorosheva’s estimates ofL8 and ,. The dotted and
dash-dotted lines are Ohshima’s analytical theory(see text) for the
flat-plate limit in whichL /a→0 andka→` [52].
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and, hence, can be treated as “known,” many are not. These
include, for example, the surface charge density, the polymer
grafting density, and various statistical characteristics of the
polymer chains—namely, the numberN, length l, and vol-

umesv1 andv2 of the statistical segments and solvent mol-
ecules, respectively.

1. Liposome size

The diameters of the liposomes used in CK’s experiments
were in the range 2–5mm. The particle size does not appear
in their theory, becauseka is assumed large enough for the
mobility to be independent of the radius. However, the par-
ticle size is relevant at low ionic strengths, when the double
layer is not infinitesimally thin compared to the particle ra-
dius. The particle radius adopted for the calculations in this
work is a=1.75mm. However, given the logarithmic scale
over which the double-layer thickness varies with ionic
strengthsI =0.5–100 mMd, it is unlikely that small relative
changes in the particle radius could significantly affect the
results.

2. PEG grafting density

Cohen and Khorosheva estimate the average distance be-
tween the grafted chains to bed<26 Å, which corresponds
to an average surface area, per chain, of approximately
700 Å2 or Os106d chains per liposome. This value can be
inferred from the reported 1:9 ratio of PEG-PE to PC lipids
used to synthesize the liposomes and the known surface area
per lipid s<70 Å2d. Clearly, the PEG-derivatized lipids must
be assumed to be uniformly distributed both within and
among all the liposomes.

3. Liposome surface charge density

The surface potential can be inferred from the electro-
phoretic mobilities of the bare liposomes using the well-

FIG. 3. The (scaled) electrophoretic mobility M
=3heV/ s2ese0kTEd of bare spherical liposomes as a function of the
(scaled) reciprocal double-layer thicknesska (aqueous NaCl atT
=25 °C with radiusa=1.75mm). The solid line is the standard
electrokinetic model with a(constant) surface charge densitys
<−1.95mC cm−2 residing at the shear planesr =ad. The dashed and
dotted lines are from calculations with a surface charge densitys
<−2.29mC cm−2 (corresponding to the “actual” surface charge)
residing 2 and 4 Å, respectively,behind the shear plane. Symbols
are experimental data of Cohen and Khorosheva[7]. Neglect of
surface curvature at low ionic strength is emphasized by Smolu-
chowski’s well-known theory M =s3/2duzu with s<−1.95
mC cm−2 at the shear plane(dash-dotted line).

TABLE I. Dimensional parameters used to interpret Cohen and Khorosheva’s[7] measurements of the
electrophoretic mobility of liposomes with terminally anchored PEG coatings. See text for details.

Surface charge densitya s −1.95mC cm−2

Particle radius a 1.75mm

Solvent dielectric constant es 78.5

Solvent viscosity h 8.90310−4 kg smsd−1

Solvent density rs 997 kg m−3

Temperature T 298 K

Ionic strength I 10−4−0.56 M

Na+ limiting conductivity L1 50.1 Sc m2 mol−1

Cl− limiting conductivity L2 76.4 Sc m2 mol−1

Monomer molar mass Mm 44 g mol−1

Number of statistical segments per chain N 0.62s103M −32d /44

PEG molar mass M 0, 0.35, 1, 2, 3, 5 kg mol−1

Statistical-segment length , 0.71 nm

Monomer-segment length ,m 0.44 nm

Statistical-segment volume v2 0.27,3

Solvent-molecule volume v1 0.082,3

Grafting density s=d−2 s0.268/,d2

Statistical-segment hydrodynamic radiusb as 0.175 Å

aFrom the bare liposome mobility(at high ionic strength) and application of thestandardelectrokinetic
model with the shear surface atr =a.
bFit of the full electrokinetic model with a self-consistent mean-field description of the polymer.
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known standardelectrokinetic model[48], which, for large
ka and low surface potential,uzu, is accurately approximated
by Smoluchowski’s formulaM =s3/2d uzu. Numerical solu-
tions of the full electrokinetic model for bare liposomes7

show that the assumption of a constant surface charge is
reasonable when the concentration of added salt(NaCl) is
greater than approximately 6 mM(see Fig. 3). The calcula-
tions were performed withs<−1.95mC cm−2, which is
equivalent to an average surface area, per elementary, univa-
lent surface charge, of approximately 28.62 Å2 at the shear
plane.8

The surface charge adopted in this work is, strictly speak-
ing, an effective value. The charge inferred by the electro-
phoretic mobility of many colloids tends to be lower than the
actual charge because the charge resides behind ashear
plane, i.e., a surface beneath which the fluid is immobile. If
the charge is independent of the concentration of ions in the
surrounding electrolyte, then the potentialat the shear plane,
uzu, necessarily decreases with increasing ionic strength. Fig-
ure 3 shows that there exists no significant difference be-
tween the mobility of bare liposomes with the actual charge
behinda shear plane and a diminished effective chargeat the
shear plane. Indeed, an effective charge density ofs
<−1.95mC cm−2 at the shear plane(solid line) yields mo-
bilities very close to those withs<−2.29mC cm−2 located
2 Å (dashed line) and 4 Å (dotted line) behind the shear
plane. Recall, a charge density of −2.29mC cm−2 reflects the
stoichiometric ratio of charged to uncharged lipids(1:9) and
the average surface area per lipid.

The concave-down shape of the mobility-ionic strength
relationship is indicative of double-layer polarization. The
departure of Smoluchowski’s mobility formula from the “ex-
act” calculations for bare liposomes(Figs. 3 and 5) demon-
strates that the diffuse double layer is not infinitesimally thin
compared to the particle radius. Furthermore, the departure
of the exact calculations from the experiments indicates that
the effectivesurface charge varies with ionic strength. When
the surface potential is sufficiently high and the double layer
sufficiently thick, the mobilitymaydecrease with increasing
charge because of polarization and the resultingmobility
maximum[48]. Nevertheless, with the prevailing values of
uzu and ka, the mobility should increase with the surface
charge.

If the decrease in effective charge were attributed entirely
to an outward displacement of the shear plane, then there
remains the question as to how and why the displacement
varies with the bulk ionic strength. The results in Fig. 3 with
charge residing behind a shear plane indicate that the dis-
tance between the shear and charged surfaces increases from
approximately 2 to 4Å. Because the difference between
theory and experiment is small compared to the influence of
the polymer, the role of counterion binding orcharge regu-
lation is not addressed here[see[59]].

The charged lipids may migrate under the influence of the
applied electric field. Such reorganization has been observed

on macroscopically flat supported lipid bilayers[60,61]. For
liposomes, migration would increase the induced dipole, and
it is well known that such polarization decreases the electro-
phoretic mobility, thereby decreasing the surface charge in-
ferred from a model that assumes immobile charge. Such a
redistribution cannot affect the mobility to linear order in the
applied electric field strength, however, because the per-
turbed charge distribution modifies the(surface) boundary
condition for the electrostatic potential, and such perturba-
tions do not affect the electrophoretic mobility[48]. An un-
ambiguous test for the significance of this nonlinearity would
be to report the mobility, particularly at low ionic strengths,
at several electric field strengths. If charge migration is sig-
nificant, then the mobility would decrease with increasing
field strength.

4. Statistical PEG segment length and volume

The statistical characteristics of the polymer chains, as
specified by the number of segments per chain, and the
length and volume of the segments, are not straightforward
to determine. However, they can be inferred from studies of
dilute aqueous solutions of PEO. Devanand and Selser[62]
measured the radius of gyration of relatively long PEO
chains in dilute aqueous solution, with molecular weights in
the range 102–103 kg mol−1. Their light-scattering experi-
ments yield a radius of gyration that scales according to clas-
sical theoretical predictions for flexible chains in agoodsol-
vent, Rg=0.215M0.583±0.031Å at 30 °C, with M the
molecular weightsg mol−1d. Unfortunately, there does not
exist a tractable theory that permitsl and N to be inferred
from these data. Rather, the parameters must be obtained
underthetaconditions, when repulsive excluded-volume in-
teractions are balanced by attractive dispersion forces.

The number of statistical segments,N, and the corre-
sponding statistical-segment lengthl were obtained from a
correlation for the radius of gyration of PEO chains under
theta conditionsRg=amM1/2, with M the molecular weight
sg mol−1d and am=0.343 Å (e.g., [63]). Since the radius of
gyration of an ideal chain(real chain in atheta solvent) is
well known to beRg= lsN/6d1/2, the length of amonomer
segment islm<0.44 nm [31,64], and Nl=sM /Mmdlm with
Mm<44 g mol−1 the molecular weight of a PEG/PEO mono-
mer, the Kuhn length isl =6Mmam

2 / lm<0.71 nm. It follows
thatN<0.623M /Mm, from which it is evident that each sta-
tistical segment comprises approximately 1.6 PEG mono-
mers.

As described in Sec. II C, givenN and l for chains with a
known molecular weight, the self-consistent-field model re-
quires knowledge ofv2/v1, v2/ l3 andxsf2d. The calculations
in this work were performed using the empirical correlations
of Pattanayek and Juvekar[38]. They calculated the molar
volume of a PEO statistical segment from the density of
aqueous PEO solutions as measured by Hasse and co-
workers [65]. At T=25 °C, their correlations givev2
=4.613 Å3<0.27l3 with l =0.71 nm. As expected from De-
vanad and Selser’s light-scattering measurements[62], Pat-
tanayek and Juvekar’s analysis of thermodynamic data, as
presented in Fig. 1, for example, confirms that water is in-
deed a good solvent for PEO/PEG at room temperature.

7Solutions of the standard electrokinetic model are calculated by
setting the polymer segment density to zero.

8The dimensionless surface charge density iss=−]csr =kad /]r
<−1910/skad.
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A statistical segment length of 3.5 Å has often been
adopted for PEG in the biophysics literature(e.g.,
[5,7,31,66,67]). It is unknown to the author from where this
value originated and, indeed, what accuracy is to be inferred.
In some cases, it has been used to characterize the monomer
length. It is often referred to as an approximate value and is
clearly inconsistent with the arguments above, which suggest
a value approximately twice as large. In support of the value
adopted in this work and by Pattanayek and Juvekar is Rus-
sel and co-workers’ survey of data in Ref.[68] giving lm
=0.44 nm andl =0.60 nm ([35], Table 6.1). The value of
3.5 Å has been associated with the Flory radius expressed as
RF=3.5Nm

3/5 Å, with Nm the number of monomers per chain.
It is therefore tempting to compare this with Devanad and
Selser’s[62] correlation,Rg=0.215M0.583±0.031Å. Substitut-
ing M =44Nm g mol−1 givesRg=1.95Nm

0.583 Å, so if RF is as-
sociated with the mean-squared end-to-end distanceR and
we apply the ratioR=Î6Rg for ideal chains, there results
RF=4.8Nm

0.583 Å, which is somewhat closer to the indicated
RF=3.5Nm

3/5 Å.

C. Segment density distributions

Segment density distributions are shown in Fig. 4 for the
five molecular weights of PEG used in CK’s experiments.
From the scaling theory pointed to in the Introduction, a
transition from mushroom conformations to brushlike struc-
ture is expected whend, lNn. With sl2=0.072 andn=3/5,
for example, the transition should occur whenN,10, so the
lowest molecular weight PEG withN=4.5 and, possibly, the
next shortest chains withN=14 should adopt Gaussian-like
distributions with a nominal coating thicknessL8, lN3/5 and
segment densityf,0.072N2/5. The longer chains, withN
=28, 42, and 70, should adopt bushlike conformations with
L8,0.42lN andf,0.17.

Indeed, the transition from mushroomlike to brushlike
structure is evident when the segment density distributions

are plotted with the axes scaled appropriately. For clarity, the
data in Figure 4 are plotted without such scaling. Neverthe-
less, it is clear that the coatings suggested by scaling theory
to be brush like are, perhaps, much less homogeneous than
one might otherwise expect. WithN=70, the profile exhibits
the characteristics of aparabolic brush[17]. For these rela-
tively low-molecular-weight polymers, brushlike characteris-
tics manifest much more distinctly in the scaling of the av-
eraged segment density and hydrodynamic coating thickness.
These are examined in detail below, after the hydrodynamic
radius of the segments is established via the electrophoretic
mobility. Further details of the coating structure, including
the distribution of end-segments, can be obtained from the
self-consistent mean-field calculations. These are discussed
in the references pointed to in the Introduction.

D. Electrophoretic mobility

The hydrodynamic radius of the polymer segments,as, is
adopted in this work as the primary “fitting” parameter. Un-
like the coating thickness and permeability,as is assumed not
to vary with the polymer chain length. Instead, it is taken to
be an intrinsic characteristic of the monomer, similarly to the
molar volumev2 and the statistical segment lengthl. The
electrophoretic mobilities shown in Fig. 5 were calculated
from the HSR electrokinetic model using the polymer seg-
ment density distributions shown in Fig. 4. Withas
=0.175 Å, the full model provides an excellent “fit” to CK’s
experimental data over a wide range of ionic strengths and
PEG chain lengths.

The most significant difference between theory(solid
curves) and experiment(circles) occurs at the lowest ionic

FIG. 4. The radial segment density distributionf=nl3 of PEG
chains terminally anchored to the surface of spherical liposomes
with radiusa=1.75mm as a function of the(scaled) distance from
the surface of the bare liposome surface,sr −ad / l. The circles(in-
terpolated with solid lines) are calculations for various numbers of
statistical segments per chain,N=4.5, 14, 28, 42, and 70, with
v2/v1=3.3, v2/ l3=0.27, sl2=0.072, and l =0.71 nm. The self-
consistent mean-field potential is specified according to Eq.(24).

FIG. 5. The electrophoretic mobilityV/E of spherical liposomes
with coatings of terminally anchored PEG as a function of the bulk
ionic strength for various numbers of statistical segments per PEG
chain, N=0 (bare liposome), 4.5, 14, 28, 42, and 70(increasing
downward); the molecular weights of the PEG chains areM =0,
0.35, 1, 2, 3, and 5 kg mol−1, respectively. The solid lines interpo-
late numerically exact solutions of the full electrokinetic model
with a self-consistent mean-field description of the polymer seg-
ment density distributions(symbols omitted for clarity). The circles
(with dotted lines to guide the eye) are Cohen and Khorosheva’s
experimental data[7], and the dash-dotted line is Smoluchowski’s
well-known theory for a bare particle withconstantsurface charge,
M =s3/2duzu. See Table I for parameters.
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strengths, for particles with the two thinnest layers and, pos-
sibly, the bare liposomes. It is possible to improve the fit by
allowing the effective surface charge to vary with the bulk
ionic strength, as demonstrated in Fig. 3 for bare liposomes.
Such an adjustment does not account for the influence of
low-molecular-weight polymer at low ionic strengths, how-
ever. The discrepancy might be attributed to lateral mobility
of surface charges and polymer, which is clearly not ac-
counted for in the present model. Recall, in CK’s experi-
ments, the charged lipids, which bear the surface charge, also
anchor the polymer. Therefore, it is not unreasonable to ex-
pect surface mobility to decrease with increasing molecular
weight, vanishing whend, lNn. Furthermore, one should ex-
pect the mobility of charged PEG-derivatized lipids to have a
similar (qualitative) dependence on the bulk ionic strength as
the liposome itself. Clearly, the comparison of experiment
and theory suggests that surface-charge mobility decreases
the particle mobility. This may be attributed to polarization
of the surface charge layer, and such a redistribution of
charge would manifest in a(scaled) particle mobility that
depends on the applied electric-field strength[48].

Explanations based on shape fluctuations are difficult to
justify because these liposomes are multilamellar and, pre-
sumably, much more rigid than unilamellar vesicles(see
[69]). Furthermore, the electrophoretic mobility at values of
ka where Smoluchowski’s theory is valid is well known to
be independent of particle size and shape. At present, the
influence of a nonuniform distribution of polymer and charge
throughout the lamellae is uncertain. Theoretical steps to-
ward understanding the distribution and influence of PEG-
lipids on curved bilayer membranes have been taken by
Rovira-Bruet al. [70]; it is not clear that these results can be
applied to large multilamellar liposomes, however. Finally, it
should be noted that the influence of polymer on the effective
dielectric constant in the layers has been neglected entirely.
The polymer presumably lowers the effective dielectric con-
stant, thereby increasing correlations between ions in the
electrolyte and on the underlying surface. Given the low
polymer volume fractionsnv2=fv2/ l3,0.15, it is difficult
at present to quantify this influence and, indeed, to distin-
guish it from the(dominant) hydrodynamic one.

E. Coating thicknesses, densities, and permeabilities

The effectivecoating thickness reflects polymer and elec-
troviscous drag when the particle is under translation in the
absence of an applied electric field. An increase in the effec-
tive size with decreasing ionic strength arises from electro-
osmotic flow that resists deformation of the equilibrium
double layer. In Fig. 6, the electroviscous effect is clearly
evident at low ionic strengths for particles with low-
molecular-weight polymer coatings. Increasing the double-
layer thickness, by decreasing the bulk ionic strength, in-
creases the characteristic ion diffusion time, and this
increases the effectiveness of convection in polarizing the
double layer. Also, the high surface potentials that prevail at
low ionic strengths support a significant charge density,
which, in turn, contributes to the electrical body force on the
fluid inside the double layer. Clearly, polymer slows the con-

vective flow and, hence, attenuates double-layer polarization.
Moreover, the electroviscous contribution to the effective
particle size diminishes with increasing layer thickness.
Therefore, at high ionic strengths, polarization is negligible
and theeffectivecoating thickness approaches thehydrody-
namic thickness.

As shown in Fig. 7, the hydrodynamic coating thickness
increases asL<0.22Nl when N.30. The thickness of the
lower-molecular-weight PEG coatings is significantly
smaller than expected from the segment density distributions
shown in Fig. 4. These layers are much more permeable than
their higher-molecular-weight counterparts. According to the
present mean-field theory, the segment density distribution is
not representative of a single PEG coil, but rather an average
over the relatively dense coils and intervening void space.
The accuracy of these calculations clearly depends on
whether the mean-field approximations, for the polymer con-
formationand hydrodynamics, are reasonable. The compari-

FIG. 6. TheeffectivethicknessL of coatings of PEG terminally
anchored to spherical liposomes with radiusa=1.75mm as a func-
tion of the bulk ionic strength. The circles(interpolated with solid
lines) are from theoretical calculations withN=4.5, 14, 28, 42, and
70 statistical segments per chain. See Table I for parameters.

FIG. 7. ThehydrodynamicthicknessL of coatings of PEG ter-
minally anchored to spherical liposomes with radiusa=1.75mm as
a function of the PEG molecular mass. The circles are from theo-
retical calculations withN=4.5, 14, 28, 42, 70, and 140 statistical
segments per chain, and the line is a power-law fitL
<0.97Nm

0.98 Å, with Nm=M /Mm the number of monomers per
chain. See Table I for parameters.
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son of theory and experiment rests on the electrophoretic
mobilities presented in Fig. 5. It is therefore helpful to com-
pare the results with those inferred from other simpler theo-
retical interpretations of experiment.

Cohen and Khorosheva’s model suggests that each mono-
mer contributes 0.128 nm to the(actual) coating thickness.
In the high-molecular-weight limit, their theory leads to coat-
ings approximately 30% thicker than suggested by the full
model. At lower molecular weights, but still in the brush
regime, their coating thicknesses are in reasonable agreement
with the full model. However, the permeabilities and Stokes
radii vary considerably, which is clearly inconsistent with
expectations for brushes.

Janzen and co-workers[5] inferred a layer thickness of
3 nm for PEG coatings with a molecular weight of
1 kg mol−1 sN<14d with a grafting densitysl2<0.072.
Note that the hydrodynamic layer thickness from the full
model is 2 nm, with chains extending as far as 5l <3.6 nm
from the grafting surface(see Fig. 4). Clearly, it is difficult to
compare uniform, steplike layers with more realistic, nonuni-
form layers. Neither Janzenet al. nor CK reported hydrody-
namic layer thicknesses.

Recall, if the polymer segments are modeled as spherical
Stokes resistance centers, then the Brinkman screening
length is ,=sFs6pasnd−1/2, with the drag coefficientFs<1
whenfs=ns4/3dpas

3!1. If the segment density distribution
is assumed uniform, then the nominal coating thickness and
segment density are related by the “known” grafting density
and polymer molecular weight. We may therefore infer from
CK’s coating thicknessesL8 and Brinkman screening lengths
,, an average(scaled) segment densityf=nl3 and hydrody-
namic segment radiusas. These are listed in columns 4–7 of
Table II. The nominal(scaled) segment density in column 5
was calculated from CK’s values ofL8 using the values ofN
(column 3) and l =0.71 nm adopted for the self-consistent
mean-field calculations. Because CK’s analysis yields coat-
ing thicknesses that are close to those obtained from the full
model, the resulting segment densities are comparable. How-
ever, the permeabilities vary considerably, yielding particu-

larly large values of, for the two coatings with the highest
molecular weight polymer. Of course, the corresponding val-
ues ofas to be inferred from CK’s data also vary consider-
ably with N. When compared to the full model, it appears
that CK’s overestimate ofL8 has been compensated for, in
part, by an underestimate ofas. Indeed, the values ofas

inferred from CK’s analysis are very small.
Because the coatings from the self-consistent mean-field

calculations are inhomogeneous, the segment densities re-
ported in column 9 of Table II are average valueskfl ob-
tained by dividing the number of segments 4pa2sN, by the
volume enclosed by the underlying bare liposome and a con-
centric sphere with a radius equal to thehydrodynamicradius
s4/3dpa3fs1+L /ad3−1g. The Brinkman screening length re-
ported in column 10 is based on this average segment den-
sity, i.e.,k,l<s6paskfl / l3d−1/2. Of course, in the full model,
, varies(radially) with the segment density.

As expected,kfl and k,l are independent ofN when
N.14. The transition from mushroomlike to brushlike struc-
ture suggested here is consistent with the region over which
L increases linearly withN in Fig. 7. For the thinnest coating,
kfl is unrealistically high and, hence, the corresponding
value ofk,l is unrealistically low. This is because the hydro-
dynamic thickness is much smaller than the characteristic
width of the segment density distributionL8, lNn, as can be
verified by identifyingL on the abscissa in Fig. 4.

IV. HYDRODYNAMIC (STOKES) RADIUS OF A
STATISTICAL SEGMENT

Recall, the statistical segment length for PEO/PEG in this
work is l =7.1 Å, and the length of a C-C bond is 1.54 Å.
Clearly, the hydrodynamic radius of the statistical segments,
as<0.175 Å, is remarkably small. While a clear quantitative
explanation is elusive, the result is consistent with other

TABLE II. Quantitative interpretation of Cohen and Khorosheva’s experiments by(i) their simplified analytical theory(CK) and(i) the
full electrokinetic model with a self-consistent mean-field description of the PEG segment density distribution(SCMF).

M
sg mol−1d M /Mm N

CKa SCMF sas=0.175 Åd

L8
(nm) fb

,
(nm)

as
c

(Å)
Ld

(nm) kfle
k,lf

(nm)

350 7 4.5 (2.9) - - - 0.42 0.55 1.4

1000 22 14 (2.6) (0.28) (1.6) (0.27) 2.0 0.36 1.7

2000 45 28 4.5 0.32 1.9 0.17 4.3 0.33 1.8

3000 67 42 7.3 0.29 2.9 0.077 6.5 0.33 1.8

5000 113 70 13.2 0.27 4.7 0.032 11 0.32 1.8

aCK caution that their theoretical interpretation is not reliable forM =350 and 1000 g mol−1 (reported here in parentheses).
bBased on a uniform distribution of segments betweenr =a anda+L8, with l =0.71 nm.
cCalculated fromas= l3/ s6pf,2d.
dThe effective coating thickness at high ionic strength, i.e., in absence of electroviscous effects.
eBased on a uniform distribution of segments betweenr =a anda+L8.
fBased on a uniform distribution of segments betweenr =a anda+L, with as=0.175 Å.

REGHAN J. HILL PHYSICAL REVIEW E70, 051406(2004)

051406-12



independent applications of the Debye-Brinkman theory. Be-
cause the Brinkman permeability is usually adopted as the
primary fitting parameter, the Stokes radius must be inferred
from previously reported permeabilities and segment densi-
ties.

Table III summarizes characteristics of polymer layers
from studies where electrokinetic theory has been used to
interpret experimental data. The hydrodynamic radius of a
PEG segment from CK’s study was obtained from their re-
ported values of, and the segment density based on the
number of segments per chainN, the coating thicknessL8,
and the grafting densityd−2. The resulting hydrodynamic ra-
dii, for either monomer segments(line 1) or statistical seg-
ments(line 2), are comparable to the value obtained from the
full model (line 3). Recall, in CK’s study, both, andL8 were
adopted as fitting parameters. In striking contrast are the hy-
drodynamic radii of the segments adopted in the other two
studies(lines 4 and 5) for PEG and glycocalyx layers. These
authors specified the hydrodynamic size of the segments and
adopted the coating thickness as a fitting parameter. Clearly,
the different methodologies, applied with theoretical models
that are fundamentally similar, lead to different interpreta-
tions of experiment.

Let us briefly examine the(incorrect) notion that the
anomalous hydrodynamic radius is an artifact of the spheri-
cal approximation of the polymer segments. Given that the
drag force on a slenderslc@acd rod with length 2lc and ra-
dius ac is f i=4phlcV/ lnslc/acd and f'=8phlcV/ lnslc/acd
when the flow is parallel and perpendicular to the director,
respectively, equating anaverageforce on a rodsf i+ f'd /2
to the average force on a sphere 6phasV, gives

as = lc/lnslc/acd. s31d

Clearly, in the absence of hydrodynamic interactions,as
should be less than, but of a comparable magnitude to,lc. If,
for example, 2lc= l =7.1 Å andac=1.54 Å, thenas=4.3 Å,
so the value ofas<0.175 Å inferred from the electrokinetic
model and experiments is clearly at odds with this simple
analysis.

Cohen Stuartet al. [39] compared measured hydrody-
namic thicknesses of adsorbed PEO layers with theory, with

the polymer segment density specified using the well-known
Scheutjens-Fleer lattice theory and(as in this work) a Debye-
Brinkman description of the flow. They adopted a semi-
empirical relationship for the Brinkman screening length,
,2=ca2sfi

−1−1d, wherefi is the polymer volume fraction in
the ith layer of the lattice anda is the so-called elementary
layer thickness. For PEO and, hence, PEG, they reported
ca2=0.5s1.0 nmd2=0.5 nm2 and pointed out that setting the
monomer length tolm=a/2 (two monomers per lattice) with
a=1.1 nm allowed theoretical calculations and experimental
data to be superposed. In this work, the statistical segment
volume isv2<0.27l3, sofi in the lattice theory is equivalent
to nv2=0.27nl3. Therefore, equating ,2=ca2/fi to
1/s6pasnd, as fi →0, yields as=fi / s6pnca2d<0.103 Å,
which is clearly very small. Alternatively, iffi is interpreted
as being equal tonmlm

3 , with nm and lm, respectively, the
(number) density and length of the monomer segments, then
,2=ca2/ fnmsa/2d3g. In this work, n=nmlm/ l =nm4.4/7.1, so
as=nmsa/2d3/ f6pnmslm/ ldca2g<0.235 Å, which is also very
small.

Further independent justification for a small Stokes radius
comes from Mijnlieff and Wiegel[71], who applied the
Debye-Brinkman model, with a Gaussian distribution of
polymer segments, to calculate the sedimentation velocity
and intrinsic viscosity for dilute poly(a-methyl styrene)
(PAMS) in cyclohexane. With a molecular weight of
2000 kg mol−1, for example, the(measured) radius of gyra-
tion is Rg<39.5 nm undertheta conditions. Assuming a
Gaussian distribution of segments, they calculated the con-
centration of polymer at the “center” of the coils to bec
<0.0179 g cm−3, with a Brinkman screening length there of
,<9.43 nm. It follows that the monomer(number) density is
nm<0.15 M sMm<118 g mol−1d and, hence, that the Stokes
radius of a monomerslm<2.5 Åd is am=0.065 Å; the
equivalent Stokes radius of a statistical segment with Kuhn
length l =2.21 nm isas=0.575 Å. Note that the ratioas/ l
<0.026 for PAMS is very close to the value established in
this work for PEO/PEG,as/ l <0.025; it is not unreasonable
to expect such a proportionality based on simple hydrody-
namic considerations. Once again, the hydrodynamic size of
the segments is very small.

TABLE III. Representative characteristics of polymer layers from electrokinetic studies. The hydrodynamic radius of the segments,as,
applies to either monomer segments or statistical segments, depending on the assignment of a value toM /Mm or N in columns 3 and 4,
respectively. The segment densityn is consistent with the assignment ofas to monomer or statistical segments.

Polymer
M

sg mol−1d M /Mm N
d

(Å)
L8
(Å)

n
(M)

,
(Å)

as

(Å) fs=ns4/3dpas
3 Ref.

PEG 1000a 22 - 26.5 26 2.0 16 0.17 2310−5 CK [7]

PEG 1000 - 14 26.5 26 1.3 16 0.27 6310−5 CK [7]

PEG 1000 - 14 26.5 20b 1.7 17 0.18 2310−5 This work

PEG 1000 22 - 26.5 30 1.7 4.9 2.2 0.04 Janzenet al. [5]

glycocalyx - - - - 75 0.072 13 7.0 0.06 Levineet al. [2]

aCK caution that parameters inferred by their model for this molecular weight may not be as accurate as for the higher molecular weights
(see Table II); nevertheless, this choice facilitates a comparison here with the parameters of Janzenet al. (line 4).
bHydrodynamic thicknessL.
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In the polymer-physics literature, the Stokes radius is
“hidden” in the hydrodynamic permeability(e.g., Debye-
Beuche[43] or the draining parameterin the well-known
Kirkwood-Riseman theory(see[72]). For polymer coils, in-
tense fluctuations in the segment density, and the long-range
nature of intramolecular hydrodynamic interactions may be
invoked to justify shortcomings of Debye-Brinkman theory.
It is not clear that such limitations apply to polymer brushes,
however. Indeed, mean-field descriptions of the equilibrium
structure of polymer layers are supported by experiments
that resolve the spatial inhomogeneity. This suggests that the
apparent shortcoming arises from the Debye-Brinkman
model and, in particular, its neglect of correlations between
(microscale) fluctuations in the segment density and fluid
velocity. Arguments based on a breakdown of continuum hy-
drodynamics at small(atomic) scales are unlikely to resolve
matters, since the hydrodynamic radii of ions and other small
molecules are well known to be comparable to their physical
size.

A comprehensive analysis of charged polymer layers is
beyond the scope of this work, but it is, nevertheless, inter-
esting to compare predictions of the electrokinetic model
with available data for associative diblock copolymers, as
reported by Cottet and co-workers[73]. These micellular
particles comprise a small, impermeable hydrophobic core
with a thick and permeable charged layer. When Donnan
equilibrium prevails inside the charged layer, i.e., at suffi-
ciently high ionic strengths, and with a “corona” that is much
thicker than the Brinkman screening length, the full electro-
kinetic model yields a remarkably simple result: the particle
electrophoretic mobility becomes equal to the mobility of a
“free” polymer segment, and, furthermore, when the charge
density is proportional to the segment density the mobility is
independent of the segment density distribution(see[6]). For
example, equating the electrical body forcensrdzeE, wherez
is theeffectivevalence of a segment, to the Darcy drag force
nsrd6phasV, yields a dimensional electrophoretic mobility

V/E = ze/s6phasd, s32d

which is clearly independent of the segment density distribu-
tion. Indeed, the mobilities of poly(styrene sulfonate) co-
polymer aggregates reported by Cottetet al., with widely
varying molecular weight, segment density, and hydrody-
namic radius, differ by less than 10% in 40 mM sodium bo-
rate electrolytesk−1<2 nmd [73]. Equation (32) and the
measured mobility V/E<−35310−9 m2/ sV sd give as

<2.73uzu Å, and Manning’s counterion condensation theory
[74] limits the effective linear charge density toe/ lB when
b / lmù lB

−1. Here, lB=e2/ s4pe0eskTd<7.1 Å is theBjerrum
lengthandb is the fraction of charged monomer segments. It
follows that uzu<slm/ lBdb<s2.5/7.1db. Note that counterion
condensation reduces the Donnan potential significantly and,
moreover, the mobility remains finite with vanishing electro-
static potential. Now, sinceb is unknown, but is typically in
the range 0.8–1.0, the ratioas/ l is in the range 0.31–0.38.
Clearly, in contrast to the neutral polymers above, the effec-
tive size of these charged segments is comparable to their
physical size[recall Eq.(31)]. Evidently, the microscale hy-

drodynamics are qualitatively different from those prevailing
with neutral polymer. With neutral polymer, the fluid is sug-
gested to preferentially flow through regions of low segment
density, thereby(substantially) reducing the average drag
force per segment. With charged polymer, however, at suffi-
ciently high ionic strengths and withf=ns4/3dpas

3!1, the
forces driving relative motion of the polymer and interstitial
electrolyte are relatively insensitive to density fluctuations on
both large and small scales.

V. SUMMARY

This work presents the first theoretical predictions of the
mobility of spherical, polymer-coated(“soft” or “fuzzy” )
colloids based on a detailed model of the polymer segment
density distribution and numerically exact solutions of the
full electrokinetic model. Numerical calculations were used,
together with experimental measurements of the electro-
phoretic mobility of liposomes with terminally anchored
PEG [7], to infer a fundamental characteristic of the
polymer—theeffectivehydrodynamic size(Stokes radius) of
the statistical segments. In principle, the model is now ca-
pable of predicting the mobilities and other single-particle
characteristics(e.g., diffusion coefficient) of a variety of col-
loids with terminally anchored PEG coatings, given param-
eters such as the size of the underlying bare colloid, the
surface charge, ionic strength, and the amount and molecular
weight of the grafted polymer.

The remarkably small Stokes radius for PEG/PEO seg-
ments (as<0.175 Å with l <7.1 Å) is suggested to be an
artifact of the mean-field(Debye-Brinkman) description of
the interstitial flow, and it was demonstrated that the small
size inferred from the calculations is consistent with other,
purely hydrodynamic, applications of the Debye-Brinkman
theory. Despite such a shortcoming, the electrokinetic model
is robust in its predictive capacity, and it relies on few “un-
known” empirical parameters.

The theoretical interpretation of experiment suggests that
correlations between microscale segment density and fluid
velocity fluctuations significantly influence the effective
Stokes radius of the segments. For free and grafted neutral
polymer chains, such correlations arise from fluid preferen-
tially flowing through regions of relatively high permeability
(low segment density) at scales smaller than those appearing
in the Debye-Brinkman model. For terminally anchored
polyelectrolyte, at moderate and high ionic strengths when
Donnan equilibrium prevails inside the layer, the drag force
on the segments is much less susceptible to density fluctua-
tions, and the effective Stokes radius of the segments is rep-
resentative of their physical size.

A variety of colloids are well known to exhibit anomalous
electrokinetic behavior at low ionic strengths. This work did
not invoke constructs such as adynamic Stern layeror
charge regulation. Nevertheless, the present level of detail
should assist future studies examining surface chemistry and
charge, surface-charge mobility, and the dynamics of ad-
sorbed polymer on fluidlike membranes.
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